Migen and LiteX --------------- .. _hello-world---blink-an-led-1: “Hello world!” - Blink an LED ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FIXME: Add the Migen and LiteX equivalent for the Verilog above. Wishbone Bus ^^^^^^^^^^^^ Migen is an HDL embedded in Python, and LiteX provides us with a Wishbone abstraction layer. There really is no reason we need to include a CPU with our design, but we can still reuse the USB Wishbone bridge in order to write HDL code. We can use ``DummyUsb`` to respond to USB requests and bridge USB to Wishbone, and rely on LiteX to generate registers and wire them to hardware signals. We can still use ``wishbone-tool`` to read and write memory, and with a wishbone bridge we can actually have code running on our local system that can read and write memory on Fomu. Go to the ``litex`` directory and build the design; .. code:: sh $ python3 workshop.py --board $FOMU_REV lxbuildenv: v2019.8.19.1 (run .\workshop.py --lx-help for help) lxbuildenv: Skipping git configuration because "skip-git" was found in LX_CONFIGURATION lxbuildenv: To fetch from git, run .\workshop.py --placer heap --lx-check-git Warning: Wire top.basesoc_adr has an unprocessed 'init' attribute. Warning: Wire top.basesoc_bus_wishbone_ack has an unprocessed 'init' attribute. Warning: Wire top.basesoc_bus_wishbone_dat_r has an unprocessed 'init' attribute. ... Info: Device utilisation: Info: ICESTORM_LC: 1483/ 5280 28% Info: ICESTORM_RAM: 1/ 30 3% Info: SB_IO: 4/ 96 4% Info: SB_GB: 8/ 8 100% Info: ICESTORM_PLL: 1/ 1 100% Info: SB_WARMBOOT: 0/ 1 0% Info: ICESTORM_DSP: 0/ 8 0% Info: ICESTORM_HFOSC: 0/ 1 0% Info: ICESTORM_LFOSC: 0/ 1 0% Info: SB_I2C: 0/ 2 0% Info: SB_SPI: 0/ 2 0% Info: IO_I3C: 0/ 2 0% Info: SB_LEDDA_IP: 0/ 1 0% Info: SB_RGBA_DRV: 0/ 1 0% Info: ICESTORM_SPRAM: 4/ 4 100% ... Info: [ 55530, 59533) |********+ Info: [ 59533, 63536) |************************************************+ Info: [ 63536, 67539) |******************************+ Info: [ 67539, 71542) |*************+ Info: [ 71542, 75545) |********************+ Info: [ 75545, 79548) |************************************************************ 5 warnings, 0 errors Load it onto Fomu: .. code:: sh $ dfu-util -D build/gateware/top.dfu dfu-util 0.8 Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMoko Inc. Copyright 2010-2014 Tormod Volden and Stefan Schmidt This program is Free Software and has ABSOLUTELY NO WARRANTY Please report bugs to dfu-util@lists.gnumonks.org Opening DFU capable USB device... ID 1209:5bf0 Run-time device DFU version 0101 Claiming USB DFU Interface... Setting Alternate Setting #0 ... Determining device status: state = dfuIDLE, status = 0 dfuIDLE, continuing DFU mode device DFU version 0101 Device returned transfer size 1024 Copying data from PC to DFU device Download [=========================] 100% 104090 bytes Download done. state(7) = dfuMANIFEST, status(0) = No error condition is present state(8) = dfuMANIFEST-WAIT-RESET, status(0) = No error condition is present Done! $ If you get an error message about missing modules, check you have all submodules cloned and setup with; .. code:: sh $ git submodule update --recursive --init $ Take a look at ``build/csr.csv``. This describes the various regions present in our design. You can see ``memory_region,sram,0x10000000,131072``, which indicates the RAM is 128 kilobytes long and is located at ``0x10000000``, just as when we had a CPU. You can also see the timer, which is a feature that comes as part of LiteX. Let’s try reading and writing RAM: .. session:: $ wishbone-tool 0x10000000 Value at 10000000: 0baf801e $ wishbone-tool 0x10000000 0x98765432 $ wishbone-tool 0x10000000 Value at 10000000: 98765432 $ Aside from that, there’s not much we can *do* with this design. But there’s a lot of infrastructure there. So let’s add something. .. image:: ../img/ice40-rgb.jpg :width: 100% :alt: RGB block This is the RGB block from the datasheet. It has five inputs: ``CURREN``, ``RGBLEDEN``, ``RGB0PWM``, ``RGB1PWM``, and ``RGB2PWM``. It has three outputs: ``RGB0``, ``RGB1``, and ``RGB2``. It also has four parameters: ``CURRENT_MODE``, ``RGB0_CURRENT``, ``RGB1_CURRENT``, and ``RGB2_CURRENT``. This block is defined in Verilog, but we can very easily import it as a Module into Migen: .. code:: python class FomuRGB(Module, AutoCSR): def __init__(self, pads): self.output = CSRStorage(3) self.specials += Instance("SB_RGBA_DRV", i_CURREN = 0b1, i_RGBLEDEN = 0b1, i_RGB0PWM = self.output.storage[0], i_RGB1PWM = self.output.storage[1], i_RGB2PWM = self.output.storage[2], o_RGB0 = pads.r, o_RGB1 = pads.g, o_RGB2 = pads.b, p_CURRENT_MODE = "0b1", p_RGB0_CURRENT = "0b000011", p_RGB1_CURRENT = "0b000011", p_RGB2_CURRENT = "0b000011", ) This will instantiate this Verilog block and connect it up. It also creates a ``CSRStorage`` object that is three bits wide, and assigns it to ``output``. By having this derive from ``AutoCSR``, the CSRStorage will have CSR bus accessor methods added to it automatically. Finally, it wires the pads up to the outputs of the block. We can instantiate this block by simply creating a new object and adding it to ``self.specials`` in our design: .. code:: python ... # Add the LED driver block led_pads = soc.platform.request("rgb_led") soc.submodules.fomu_rgb = FomuRGB(led_pads) Finally, we need to add it to the ``csr_map``: .. code:: python ... soc.add_csr("fomu_rgb") Now, when we rebuild this design and check ``build/csr.csv`` we can see our new register: .. code:: csv csr_register,rgb_output,0xe0006800,1,rw We can use ``wishbone-tool`` to write values to ``0xe0006800`` and see them take effect immediately. You can see that it takes very little code to take a Signal from HDL and expose it on the Wishbone bus.